miércoles, 4 de junio de 2014

MODELOS DE COLAS



Modelo A: de un solo servidor

El modelo de filas de espera más sencillo corresponde a un solo servidor y una sola fila de clientes.

Para especificar con más detalle el modelo, haremos las siguientes suposiciones:

  1. La población de clientes es infinita y todos los clientes son pacientes.
  2. Los clientes llegan de acuerdo con una distribución de Poisson y con una tasa media de llegadas de clientes por periodo.
  3. La distribución del servicio es exponencial, con una tasa media de servicio de ì.
  4. A los clientes que llegan primero se les atiende primero.
  5. La longitud de la fila de espera es ilimitada.


A partir de ellas, podemos aplicar varias fórmulas para describir las características de operación del sistema:



Ejemplo del cálculo de las características de operación de un sistema con un solo canal y una sola fase La gerente de un supermercado está interesada en brindar un buen servicio a las personas de mayor edad que compran en su local. Actualmente, el supermercado cuenta con una caja de salida reservada para los jubilados. Estas personas llegan a la caja a un ritmo promedio de 30 por hora, de acuerdo con una distribución de Poisson, y son atendidos a una tasa promedio de 35 clientes por hora, con tiempos de servicio exponenciales. Calcule los siguientes promedios:

a. Utilización del empleado de la caja de salida.
b. Número de clientes que entran al sistema.
c. Número de clientes formados en la fila.
d. Tiempo transcurrido dentro del sistema.
e. Tiempo de espera en la fila.

Solución. La caja de salida puede representarse como un sistema con un solo canal y una sola fase. Usamos las ecuaciones correspondientes a las características de operación del modelo con un solo servidor para calcular las características promedio:



Modelo B: de múltiples servidores

En el modelo con múltiples servidores, los clientes forman una sola fila y escogen, entre s servidores, aquel que esté disponible. El sistema de servicio tiene una sola fase. Partiremos de las siguientes suposiciones, además de las que hicimos para el modelo con un solo servidor: tenemos s servidores idénticos, y la distribución del servicio para cada uno de ellos es exponencial, con un tiempo medio de servicio igual a 1/u.

Con estas suposiciones, podemos aplicar varias fórmulas a fin de describir las características de operación del sistema de servicio:




Ejemplo de estimación del tiempo de ocio y los costos de operación por hora, mediante el modelo con múltiples servidores. La gerencia del correo internacional DHL en la central del barrio de Mataderos, Buenos Aires, está preocupada por la cantidad de tiempo que los camiones de la compañía permanecen ociosos, en espera de ser descargados. Esta terminal de carga funciona con cuatro plataformas de descarga. Cada una de éstas requiere una cuadrilla de dos empleados, y cada cuadrilla cuesta $30 por hora. El costo estimado de un camión ocioso es de $50 por hora. Los camiones llegan a un ritmo promedio de tres por hora, siguiendo una distribución de Poisson. En promedio, una cuadrilla es capaz de descargar un semirremolque en una hora, y los tiempos de servicio son exponenciales. ¿Cuál es el costo total por hora de la operación de este sistema?:

Solución. El modelo con múltiples servidores es apropiado. Para encontrar el costo total de mano de obra y de los camiones ociosos, debemos calcular el tiempo promedio de espera en el sistema y el número promedio de camiones en el mismo. Sin embargo, primero tendremos que calcular el número promedio de camiones en la fila y el tiempo promedio de espera en la fila.



Modelo C: con fuente finita

Consideremos ahora una situación en la que todas las suposiciones del modelo con un solo servidor son apropiadas, excepto una. En este caso, la población de clientes es finita, porque sólo existen N clientes potenciales. Si N es mayor que 30 clientes, resulta adecuado el modelo con un solo servidor, sobre la suposición de que la población de clientes sea infinita. En los demás casos, el modelo con fuente finita es el que más conviene utilizar. Las fórmulas que se usan para calcular las características de operación del sistema de servicio son:



Ejemplo de análisis de los costos de mantenimiento aplicando el modelo con fuente finita. Hace casi tres años, Gear Tandil SA instaló un conjunto de 10 robots que incrementó considerablemente la productividad de su mano de obra, pero en el último tiempo la atención se ha enfocado en el mantenimiento. La empresa no aplica el mantenimiento preventivo a los robots, en virtud de la gran variabilidad que se observa en la distribución de las averías. Cada máquina tiene una distribución exponencial de averías (o distribución entre llegadas), con un tiempo promedio de 200 horas entre una y otra falla. Cada hora-máquina perdida como tiempo ocioso cuesta $30, lo cual significa que la empresa tiene que reaccionar con rapidez en cuanto falla una máquina. La empresa contrata sólo a una persona de mantenimiento, quien necesita 10 horas de promedio para reparar un robot. Los tiempos de mantenimiento real están distribuidos exponencialmente. La tasa de salarios es de $10 por hora para el encargado de mantenimiento, el cual puede dedicarse productivamente a otras actividades cuando no hay robots que reparar. Calcule el costo diario por concepto de tiempo ocioso de la mano de obra y los robots.

Solución. El modelo con fuente finita es apropiado para este análisis, porque sólo 10 máquinas constituyen la población de clientes y las demás suposiciones se han cumplido. En esta caso, ë = 1/200, o sea, 0,005 averías por hora, y ì = 1/10 = 0,10 robots por hora. Para calcular el costo del tiempo ocioso para la mano de obra y los robots, tenemos que estimar la utilización promedio del empleado de mantenimiento y L, es decir, el número promedio de robots incluidos en el sistema de mantenimiento. Sin embargo, para mostrar cómo se utiliza el modelo con fuente finita, computaremos primero todas las estadísticas de operación.



CARRO PAZ, Roberto, and Daniel GONZÁLEZ GÓMEZ. MODELOS DE LÍNEAS DE ESPERA. N.p.: Facultad de Ciencias Económicas y Sociales, Universidad Nacional de Mar del Plata, n.d. 8-15. Print. Extracto con fines didácticos, todos los derechos reservados a los autores.
Es




1 comentario: